Products and Technologies for Advanced Wafer Processing

Drive Innovation, Deliver Excellence

ASM International
Analyst and Investor Technology Seminar
Semicon West July 11 2012
• **ASM Front-end Products and selected applications**
 - ALD High-k gate/metal gate
 - PEALD for Spacer Defined Double Patterning
 - Epitaxy
 - Low-k
 - Vertical Furnace

• **Platform roadmap**

• **Summary**
Scaling will increasingly be enabled by New Materials and 3D Technologies

Scaling enabled by Litho

Scaling enabled by Materials

Scaling enabled by 3D

Low-k

Strained Si

High-k

FinFET

3D SIC

3D Memory

IEDM 2002

IEDM 2003

SiGe

IEDM 2007

Chipworks 2012
Market Requirements: 32nm → 22nm → 14nm and beyond

<table>
<thead>
<tr>
<th>Process</th>
<th>Application</th>
<th>ASM Relative Positioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALD and PEALD</td>
<td>• ALD key for High-k Metal Gate technology</td>
<td>✓ #1 in the served ALD market</td>
</tr>
<tr>
<td></td>
<td>• 3D FinFET requires more conformal layers, strength of ALD</td>
<td>✓ Qualified by nearly all Logic manufacturers</td>
</tr>
<tr>
<td></td>
<td>• SDDP-application of PE-ALD</td>
<td>✓ Strengthening inroads into Memory with PEALD</td>
</tr>
<tr>
<td>Diffusion Furnace</td>
<td>• Smallest footprint per reactor</td>
<td>✓ Leading IC manufacturers are customers</td>
</tr>
<tr>
<td></td>
<td>• Lowest Cost of Ownership</td>
<td></td>
</tr>
<tr>
<td>Epitaxy</td>
<td>• Affordable method of high quality crystal growth</td>
<td>✓ ASM one of only two top vendors</td>
</tr>
<tr>
<td></td>
<td>• Thick Epi layers for power devices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Strained Epi films for CMOS</td>
<td>✓ ASM one of only three top vendors in PE-CVD</td>
</tr>
<tr>
<td>PECVD</td>
<td>• Advanced intermetal dielectric film</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Extreme low-k films</td>
<td></td>
</tr>
</tbody>
</table>

Strong IP protected portfolio
ASM Products – Front-end

Market Requirements: 32nm → 22nm → 14nm and beyond

<table>
<thead>
<tr>
<th>Process</th>
<th>Application</th>
<th>ASM Relative Positioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALD and PEALD</td>
<td>• ALD key for High-k Metal Gate technology</td>
<td>✓ #1 in the served ALD market</td>
</tr>
<tr>
<td>• ALD solution (Hafnium oxide)</td>
<td>• 3D FinFET requires more conformal layers, strength of ALD</td>
<td>✓ Qualified by nearly all Logic manufacturers</td>
</tr>
<tr>
<td>• PEALD Low temp dielectrics</td>
<td>• SDDP-application of PE-ALD</td>
<td>✓ Strengthening inroads into Memory with PEALD</td>
</tr>
<tr>
<td>Diffusion Furnace</td>
<td>• Smallest footprint per reactor</td>
<td>✓ Leading IC manufacturers are customers</td>
</tr>
<tr>
<td>• Advanced batch processing</td>
<td>• Lowest Cost of Ownership</td>
<td></td>
</tr>
<tr>
<td>• Unique “dual reactor dual boat” design</td>
<td>• Affordable method of high quality crystal growth</td>
<td>✓ ASM one of only two top vendors</td>
</tr>
<tr>
<td>Epitaxy</td>
<td>• Thick Epi layers for power devices</td>
<td>✓ ASM one of only three top vendors in PE-CVD</td>
</tr>
<tr>
<td>• Epitaxial films for analog devices</td>
<td>• Strained Epi films for CMOS</td>
<td></td>
</tr>
<tr>
<td>• Epitaxial films for NMOS/PMOS</td>
<td>• Advanced intermetal dielectric film</td>
<td></td>
</tr>
<tr>
<td>PECVD</td>
<td>• Extreme low-k films</td>
<td></td>
</tr>
</tbody>
</table>

Strong IP protected portfolio
High-k Metal Gate: Gate Dielectric

- Current practice: Hf based (HfO₂ or HfSiO₄) from HfCl₄/SiCl₄/H₂O
 - So far, MO chemistries have proven to be inferior (roughness, leakage, reliability)
- Migration towards HfO₂ as the standard because lower Equivalent Oxide Thicknesses (EOT) can be reached
 - EOT’s in the range of 0.7-1.2nm demonstrated with HfO₂
High-k Material Adoption Trend
High Performance and Low Standby Power

- ALD HfO$_2$ is the only material for HP devices
- High-k for LSTP devices will transition to ALD HfO$_2$
- Convergence to gate last process for all logic to enable optimization of work function
Transition to 3D Fully Depleted Devices and the Importance of Conformality

- Metal and high-k over very challenging topography
- EOT and work function have to be uniform over fin height
- FinFET’s drive need for conformal films with uniform thickness, composition and micro-structure
Perpendicular to Fin

- Metal and high-k over very challenging topography
- EOT and work function have to be uniform over fin height
- Success of FinFETs is enabled with ALD metal gates
- Entire spectrum of work functions researched and available from ASM
• ALD HfO$_2$ has become the de-facto high-k standard
• Gate last process will be used for logic to enable work function optimization of the metal gate electrodes
• 3D FinFET’s drive adoption of ALD, not only for the dielectric, but now also for metals
• Metals and damascene like process flows have penetrated the Front-end of the Line
• **Pulsar® XP**
 • ALD for high-k
 • Cross-flow reactor
 • Solid source delivery system

• **EmerALD® XP**
 • ALD for metal gates
 • Showerhead reactor
Market Requirements: 32nm → 22nm → 14nm and beyond

<table>
<thead>
<tr>
<th>Process</th>
<th>Application</th>
<th>ASM Relative Positioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALD and PEALD</td>
<td>• ALD key for High-k Metal Gate technology</td>
<td>✓ #1 in the served ALD market</td>
</tr>
<tr>
<td></td>
<td>• 3D FinFET requires more conformal layers, strength of ALD</td>
<td>✓ Qualified by nearly all Logic manufacturers</td>
</tr>
<tr>
<td></td>
<td>• SDDP-application of PE-ALD</td>
<td>✓ Strengthening inroads into Memory with PEALD</td>
</tr>
<tr>
<td>Diffusion Furnace</td>
<td>• Smallest footprint per reactor</td>
<td>✓ Leading IC manufacturers are customers</td>
</tr>
<tr>
<td></td>
<td>• Lowest Cost of Ownership</td>
<td>✓ ASM one of only two top vendors</td>
</tr>
<tr>
<td>Epitaxy</td>
<td>• Affordable method of high quality crystal growth</td>
<td>✓ ASM one of only three top vendors in PE-CVD</td>
</tr>
<tr>
<td></td>
<td>• Thick Epi layers for power devices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Strained Epi films for CMOS</td>
<td></td>
</tr>
<tr>
<td>PECVD</td>
<td>• Advanced intermetal dielectric film</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Extreme low-k films</td>
<td></td>
</tr>
</tbody>
</table>

Strong IP protected portfolio
Spacer Defined Double Patterning

- After PEALD SiO₂ deposition (on full stack)
 - PR/BARC
 - PEALD SiO₂
 - SiOC
 - a-C
 - Polysilicon
 - Si substrate

- After PEALD spacer etch-back and photoresist strip
 - PEALD spacer

- After SiOC opening
 - SiOC

- After a-C opening
 - SiOC
 - a-C

- After polysilicon etching, without a-C removal
 - Poly-Si

- After polysilicon etching, with a-C removal
 - Poly-Si
• **Spacer defined quadruple patterning**: two sequences of spacer pattern transfer
• **MIR 3000**

 - PEALD of SiO$_2$ for Spacer Defined Double Patterning

 - High productivity XP cluster with 2 PEALD modules, each processing 4 wafers

 - PEALD enables tunable SiO$_2$ film properties, to optimize for film quality or ease of film removal
ASM Products – Front-end

Market Requirements: 32nm → 22nm → 14nm and beyond

<table>
<thead>
<tr>
<th>Process</th>
<th>Application</th>
<th>ASM Relative Positioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALD and PEALD</td>
<td>• ALD key for High-k Metal Gate technology</td>
<td>✓ #1 in the served ALD market</td>
</tr>
<tr>
<td></td>
<td>• 3D FinFET requires more conformal layers, strength of ALD</td>
<td>✓ Qualified by nearly all Logic manufacturers</td>
</tr>
<tr>
<td></td>
<td>• SDDP-application of PE-ALD</td>
<td>✓ Strengthening inroads into Memory with PEALD</td>
</tr>
<tr>
<td>Diffusion Furnace</td>
<td>• Advanced batch processing</td>
<td>✓ Leading IC manufacturers are customers</td>
</tr>
<tr>
<td></td>
<td>• Unique “dual reactor dual boat” design</td>
<td>✓ ASM one of only two top vendors</td>
</tr>
<tr>
<td>Epitaxy</td>
<td>• Epitaxial films for analog devices</td>
<td>✓ ASM one of only three top vendors in PE-CVD</td>
</tr>
<tr>
<td></td>
<td>• Epitaxial films for NMOS/PMOS</td>
<td></td>
</tr>
<tr>
<td>PECVD</td>
<td>• Extreme low-k films</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Advanced intermetal dielectric film</td>
<td></td>
</tr>
</tbody>
</table>
Extendibility of ASM’s Low-k Solution

- HVM since 2001
- Aurora®Lowk
- Aurora®ULK
- Visibility until 2017
- Aurora®ELK(UV)
- UV assisted Porogen
Introduced during Semicon West 2012

- **XP8**
 - High productivity single wafer tool for both PEALD and PECVD applications
 - Accommodates up to 8 chambers for PEALD or PECVD
 - PEALD and PECVD can be integrated on the same platform
Market Requirements: 32nm → 22nm → 14nm and beyond

Process
- **ALD and PEALD**
 - ALD solution (Hafnium oxide)
 - PEALD Low temp dielectrics

Application
- **ALD** key for High-k Metal Gate technology
- 3D FinFET requires more conformal layers, strength of ALD
- SDDP-application of PE-ALD

ASM Relative Positioning
- #1 in the served ALD market
- Qualified by nearly all Logic manufacturers
- Strengthening inroads into Memory with PEALD

<table>
<thead>
<tr>
<th>Process</th>
<th>Application</th>
<th>ASM Relative Positioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diffusion Furnace</td>
<td>Smallest footprint per reactor</td>
<td>Leading IC manufacturers are customers</td>
</tr>
<tr>
<td>• Advanced batch processing</td>
<td>• Lowest Cost of Ownership</td>
<td></td>
</tr>
<tr>
<td>• Unique “dual reactor dual boat” design</td>
<td>• Affordable method of high quality crystal growth</td>
<td></td>
</tr>
<tr>
<td>Epitaxy</td>
<td>• Thick Epi layers for power devices</td>
<td>• ASM one of only two top vendors</td>
</tr>
<tr>
<td>• Epitaxial films for analog devices</td>
<td>• Strained Epi films for CMOS</td>
<td></td>
</tr>
<tr>
<td>• Epitaxial films for NMOS/PMOS</td>
<td>• Advanced intermetal dielectric film</td>
<td>• ASM one of only three top vendors in PE-CVD</td>
</tr>
<tr>
<td>PECVD</td>
<td>• Extreme low-k films</td>
<td></td>
</tr>
</tbody>
</table>

Strong IP protected portfolio
• Number of epi layers dependent upon the breakdown voltage required (i.e. product application specific)
• Typical breakdown voltages from 600 – 800V
• Implemented in production by various companies

ASM Product: Epsilon® 3200
Epi for advanced power devices
ASM Front-end Products
Epitaxy

Introduced during Semicon West 2012

- **Intrepid® XP**
 - Epi for advanced CMOS strain
 - High productivity system using ASM’s XP cluster with 4 Epi reactors
 - Integrated Pre-Clean for pre-Epi interface control
ASM Products – Front-end

Market Requirements: 32nm → 22nm → 14nm and beyond

<table>
<thead>
<tr>
<th>Process</th>
<th>Application</th>
<th>ASM Relative Positioning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALD and PEALD</td>
<td>• ALD key for High-k Metal Gate technology
• 3D FinFET requires more conformal layers, strength of ALD
• SDDP-application of PE-ALD</td>
<td>✓ #1 in the served ALD market
✓ Qualified by nearly all Logic manufacturers
✓ Strengthening inroads into Memory with PEALD</td>
</tr>
<tr>
<td>Diffusion Furnace</td>
<td>• Advanced batch processing
• Unique “dual reactor dual boat” design</td>
<td>✓ Smallest footprint per reactor
✓ Lowest Cost of Ownership</td>
</tr>
<tr>
<td>Epitaxy</td>
<td>• Epitaxial films for analog devices
• Epitaxial films for NMOS/PMOS</td>
<td>• Affordable method of high quality crystal growth
• Thick Epi layers for power devices</td>
</tr>
<tr>
<td>PECVD</td>
<td>• Extreme low-k films</td>
<td>• Strained Epi films for CMOS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Advanced intermetal dielectric film</td>
</tr>
</tbody>
</table>
A412 PLUS: Productivity and Innovation

Productivity
- One A412 PLUS = up to 80 kwpm (2.5 hr process, 95% available, 150 wafer boat)
- About 40% lower capex per m² as competitors
- Dual boat/dual reactor system

Real time production data:

![Graph showing Wafers Out in one Day over 24 hrs from 04/11 0:00 to 04/12 0:00]

Innovation
- Addition of ALD processes
- Example: Batch ALD TiN process

![SEM images showing film thicknesses: 57.7 nm, 56.1 nm, 55.0 nm, and 56.1 nm at TOP, CENTER, and BOTTOM]
Wafer Fab Equipment Forecast

Share of 28nm, 22nm and 14nm of total Equipment spending increasing in 2012-2013

Key customer ALD penetrations in 28 and 22nm: market segments with high expected growth

Gartner June, 2012
Summary

- Adoption of more ALD and PEALD applications in HVM continues
 - #1 position in ALD for High-k gate
 - 3D FinFET’s drive adoption of ALD, not only for the dielectric, but also for metals
 - strong inroads into patterning applications with PEALD
- Introduced Intrepid® XP, system with 4 Epi reactors, for CMOS strain Epi
- Introduced XP8, high productivity system for PEALD and PECVD applications
- ASM’s Vertical Furnace is providing the lowest CoO and footprint per reactor
- 450mm development started and first tools have been shipped

Drive Innovation, Deliver Excellence