ASMI INVESTOR DAY2021 GROWTH THROUGH INNOVATION

Benjamin Loh President and CEO

September 28, 2021

FORWARD-LOOKING STATEMENTS

Cautionary Note Regarding Forward-Looking Statements:

This presentation contains "forward-looking statements". All statements in ASMI's Investor Day 2021 presentations, other than statements of historical fact, are forward-looking statements. Forward-looking statements involve risks and uncertainties that could cause actual results to differ materially from those in the forward-looking statements. These risks and uncertainties include, but are not limited to, economic conditions and trends in the semiconductor industry generally and the timing of the industry cycles specifically, product demand and semiconductor equipment industry capacity, worldwide demand and manufacturing capacity utilization for semiconductors, currency fluctuations, corporate transactions, financing and liquidity matters, the success of restructurings, the timing of significant orders, market acceptance of new products, competitive factors, litigation involving intellectual property, shareholders or other issues, commercial and economic slowdown or disruption including due to natural disasters (including pandamics), terrorist activity, armed conflict or political instability, changes in laws including import/ export regulations, changes in tax and exchange rates, epidemics and other risks indicated in the Company's reports and financial statements. Investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date of this presentation. The Company assumes no obligation nor intends to update or revise any forward-looking statements to reflect future developments or circumstances. Forward-looking statements are not guarantees of future performance, and actual results, developments and business decisions may differ materially from those envisaged by forward-looking statements.

KEY TAKEAWAYS

#

Strong digitalization trends driving significant growth in the semiconductor and WFE market

ASMI is the leader in ALD and expanding in Epi, technologies that are expected to outgrow the WFE market driven by key inflections such as gate-all-around (GAA)

Strengths in innovation, early customer engagements and product differentiation enables advanced cost effective solutions for customers

Strategic objectives are maintaining leadership in logic/foundry, expansion in memory, share gains in the Epi market, growing spares and services and increasing focus on sustainability

We target to grow revenue to €2.8-€3.4 billion by 2025 representing a CAGR of 16-21% with an operating margin of 26-31%

KEY HIGHLIGHTS AT A GLANCE 2016-2020

More than 5 decades of experience

Innovation helping to advance Moore's Law

Market leader in single-wafer ALD

Market share of ~55%1

Revenue 22% CAGR

Revenue per headcount expansion 44%

Operating Margin Expansion

11% Points

¹ ASM internal data

² Intensity per mtCO₂e/million € R&D investment

Increased share in Epi

Grew share to ~15%

Expanded manufacturing

Singapore end 2020

Patents in force

41% (2020: 2,094) GHG emission scope 1&2

MARKET OPPORTUNITIES

DIGITAL TRANSFORMATION DRIVES STRUCTURAL GROWTH

Source: VLSI Research, ASMI Aug 2021

WFE SPENDING EXPECTED TO INCREASE STRONGLY

WFE Market forecast (US\$ million)

Source: VLSI Research Sept 2021

WFE growth driven by secular trends of AI, 5G, EV, edge computing etc

Multi-year investments announced across all market segments

Further scaling, 3D transitions and GAA driving investments in advanced CMOS

Government sovereign efforts could add further investments

WITH INCREASING MIX OF MOST ADVANCED NODES

WFE market by technology node

Most advanced nodes (7nm and below) are structurally the fastest growing parts of the WFE market – ASMI strength

Source: Gartner July 2021

WELL POSITIONED TO ADDRESS THE MAJOR TRENDS

3D and new materials increasingly required for next generation semiconductors

3D-NAND STACKING

PLANAR TO 3D-DRAM

ADDRESSABLE MARKETS EXPECTED TO MORE THAN DOUBLE BY 2025

Single-wafer ALD market outlook (US\$ billion)

ASMI internal market data

STRENGTHS & INNOVATION

STRENGTHS AND INNOVATION

Strengths

Focus on deposition especially ALD and Epi

Strong history in innovation

Leading products and applications

Early customer engagements

- Market leader in single-wafer ALD
- **Expanded market** position in Epi
- ASMI growing 1.5x faster than WFE market in 2016-2020

STRONG HISTORY IN INNOVATION

Global networked **R&D** model

Close and early collaboration with imec, universities, customers

More than two decades of accumulated knowhow in **ALD** materials and chemistries

Decades of experience in developing ALD and Epi reactors and processes

LEADING PRODUCTS AND APPLICATIONS

ALD

- Broadest portfolio of ALD products and applications
- Innovative strength in ALD reactor design
- Strength in chemistries and applications using new materials
- Superb cost of ownership, film performance, high flexibility in precursor delivery

- Superb isothermal reactor design with best in class close-loop direct wafer temperature control
- Low cost of ownership and outstanding monolayer film control for advanced CMOS
- Continued innovation to provide outstanding performance and cost of ownership for power/ analog/sensor market

INTEGRATED SURFACE **CLEAN CAPABILITY**

- Developed wide range of critical surface clean technologies
- Clustered with both Epi and ALD

EARLY CUSTOMER ENGAGEMENTS

Working with all major logic/foundry and memory customers to develop solutions for forthcoming technology inflections

STRATEGY

Contraction of the second

1.000

TITTI

STRATEGY

Strategic objectives:

Drive continued strong financial performance

STRATEGY

Strategic objectives:

Maintain leading ALD share in logic/foundry, expand in memory
Increase Epi market share
Selective growth in Vertical Furnace and PECVD niches
Grow spares and services business
Accelerating progress in sustainability
Drive continued strong financial

performance

How:

- Increase R&D investments especially in fastest growing segments – ALD and Epi
- Continue enabling customer roadmaps with most innovative products and applications
- Strengthen culture and develop our people
- Accelerate commitment to sustainability
- Maximize potential from growing installed base and increase outcome-based services
- Expand and optimize manufacturing and supply chain

EXPANSION IN R&D CAPACITY

Includes: Significant increase in headcount across all sites 0

Phoenix, USA Dongtan, South Korea

Significant increase in lab metrology and development related tools

LEADING WITH INNOVATIVE PRODUCTS AND APPLICATIONS

New industry ALD workforce with superb performance and cost of ownership Synergis™ Surface Clean N 1 1 Clean / Metal Metal Metals Nitrides Oxides Treatment Work Interfacial Patterning function, engineering Metallization high-k conducting / clustered nitrides Films

VERACE-CL

ES

LMS XL

AEGIS

STRENGTHENING CULTURE, DEVELOPING OUR PEOPLE

Leadership & Development

Strengthening our talent pool by focusing on long-term career progression with training for all employees and our future leaders.

Growing Engagement We are making the changes that matter. Engagement initiatives have driven improvements for all at ASMI.

Strengthening our Culture

A renewed focus on our culture and values. Shaping a culture of compassion, inclusivity, innovation, and drive to deliver.

Inclusion & Diversity

We have implemented Employee Resource Groups to create a workplace where employees can be their true selves.

PEOPLE ARE OUR BIGGEST ASSET

ACCELERATING PROGRESS IN SUSTAINABILITY

Sustainability targets

Addressing climate change is imperative

Fostering inclusion and diversity in our employee base

Innovating to reduce energy consumption and emissions on our equipment

Net zero

Reduce environmental footprint of our operations

100% renewable electricity by 2024

Aim to be net zero by 2035 (scope 1, 2 and 3 emissions)

GROWING SPARES AND SERVICES

Number of systems

Increasing revenue through a rapidly growing installed base

Increasing value to our customers —

Increasing revenue through introduction of more outcome-based services

EXPANDING AND OPTIMIZING MANUFACTURING AND SUPPLY CHAIN

New Singapore manufacturing facility

1st floor in production since Q4 2020

Increased flexibility to meet customer demand

2nd floor design work started and production ready by early 2023

This new facility has been designed with high sustainability standard

Supply chain optimization

Strengthened base of world class EMS partners

Increased multiple sourcing

KEY TAKEAWAYS

#

Strong digitalization trends driving significant growth in the semiconductor and WFE market

ASMI is the leader in ALD and expanding in Epi, technologies that are expected to outgrow the WFE market driven by key inflections such as gate-all-around (GAA)

Strengths in innovation, early customer engagements and product differentiation enables advanced cost effective solutions for customers

Strategic objectives are maintaining leadership in logic/foundry, expansion in memory, share gains in the Epi market, growing spares and services and increasing focus on sustainability

We target to grow revenue to €2.8-€3.4 billion by 2025 representing a CAGR of 16-21% with an operating margin of 26-31%

ASMI INVESTOR DAY2021 **DRIVING INNOVATION**

Ivo J. Raaijmakers CTO

September 28, 2021

FORWARD-LOOKING STATEMENTS

Cautionary Note Regarding Forward-Looking Statements:

This presentation contains "forward-looking statements". All statements in ASMI's Investor Day 2021 presentations, other than statements of historical fact, are forward-looking statements. Forward-looking statements involve risks and uncertainties that could cause actual results to differ materially from those in the forward-looking statements. These risks and uncertainties include, but are not limited to, economic conditions and trends in the semiconductor industry generally and the timing of the industry cycles specifically, product demand and semiconductor equipment industry capacity, worldwide demand and manufacturing capacity utilization for semiconductors, currency fluctuations, corporate transactions, financing and liquidity matters, the success of restructurings, the timing of significant orders, market acceptance of new products, competitive factors, litigation involving intellectual property, shareholders or other issues, commercial and economic slowdown or disruption including due to natural disasters (including pandamics), terrorist activity, armed conflict or political instability, changes in laws including import/ export regulations, changes in tax and exchange rates, epidemics and other risks indicated in the Company's reports and financial statements. Investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date of this presentation. The Company assumes no obligation nor intends to update or revise any forward-looking statements to reflect future developments or circumstances. Forward-looking statements are not guarantees of future performance, and actual results, developments and business decisions may differ materially from those envisaged by forward-looking statements.

KEY TAKEAWAYS

GLOBAL NETWORKED R&D ORGANIZATION

R&D IN NUMBERS

- of which 44% having an advanced degree
- 2,094 patents in force

R&D spending: 2020 full year; others: 2020 end of year

R&D DRIVING INNOVATION AND ALIGNMENT WITH CUSTOMERS ROADMAPS

R&D DRIVING INNOVATION FOR MORE THAN TWO DECADES

R&D DRIVING INNOVATION FOR MORE THAN TWO DECADES

R&D PORTFOLIO ALIGNED WITH CUSTOMERS

Device	Ν		N+1		N+2		N+3		>N+4	
HVM Year	2020	2021	2022	2023	2024	2025	2026	2027	2028	202
DRAM			Planar DR	RAM				3D-D	RAM	
3D-NAND	Single to Multi-tier 3D-NAND					Novel Concepts				
Logic/foundry	F	FinFET 5 \rightarrow 3nm GAA ¹ 2n			GAA ¹ 2nm	FS^2 -GAA 15Å $ ightarrow$ 10Å				
Customer Activity	HVM ³		Pilot Production		Development		Pathfinding		Exploration	
ASMI Activity	Support HVM		PTOR ⁴ Selection		DTOR⁵ Selection		First demos, Pathfinding JDP ⁶		Externa Scou	al R&D uting

- Current R&D aimed at further scaling and architecture changes to extend Moore's Law
- ASMI is engaged with R&D partners and customers on post 3D-NAND concepts, Fork-Sheet (second generation) GAA and several technologies that will be needed beyond 2028

¹Gate-all-around; ² Fork Sheet; ³ High Volume Manufacturing; ⁴ Production Tool of Record; ⁵ Development Tool of Record; ⁶ Joint Development Program

MAJOR ROADMAP TRENDS

Everything going 3D to enable scaling

 Conformal thickness, composition and electrical properties requires more ALD...

Thinner films, complex stacks, more interfaces

 Atomically engineered surface clean and preparation technology

Many new materials are needed

Bottom-up selective deposition to supplement top-down deposition and etcl

b	

MAJOR ROADMAP TRENDS

These 3D transitions and materials lead to opportunities for ASMI in ALD and Epi markets

ASMI INVESTOR DAY 2021

וכחמ

WHAT IS ALD?

Clean surface before ALD

First precursor pulse comes in

A first ALD layer is completed A second ALD layer is completed

Precursor reacts with, and attaches to surface

Many ALD layers form a high quality thin film material

ASMI IS MARKET LEADER IN ALD

CVD Step coverage not OK

CVD Step coverage OK, but properties not OK

Unmatched capability to conformally cover 3D structures with complex materials, with near perfect composition and electrical properties control

ALD Step coverage, composition and properties all OK

CORE STRENGTH: MATERIALS AND PRECURSOR CHEMISTRY

H								
Hydrogen 1.008								
3	Be							
Lithium 6.94	Beryllium 9.0121831							
Na	¹² Mg							
Sodium 22.98976928	Magnesium 24.305	IIIB						
19	20	21	22	23	24	25	26	27
K	Ca	Sc	Ti		Cr	Mn	Fe	
Potassium 39.0983	Calcium 40.078	Scandium 44.955908	Titanium 47.867	Vanadium 50.9415	Chromium 51.9961	Manganese 54.938044	Iron 55.845	(58
37 _	38	39	40	41 _	42	43	44	45
Rb	Sr		Zr	Nb	Mo	Тс	Ru	F
Rubidium 85.4678	Strontium 87,62	Yttrium 88.90584	Zirconium 91,224	Niobium 92,90637	Molybdenum 95.95	Technetium (98)	Ruthenium 101,07	Rł 10
55	56		72	73	74	75	76	77
CS	Ba	57 - 71 Lanthanoids	Hf	Та		Re		
Caesium 132,90545196	Barium 137,327		Hafnium 178,49	Tantalum 180,94788	Tungsten 183,84	Rhenium 186,207	Osmium 190,23	
87	88		104	105 _	106	107	108	109
Fr	Ra	89 - 103 Actinoids	Rf	Db	Sg	Bh	Hs	
Francium (223)	Radium (226)		Rutherfordium (267)	Dubnium (268)	Seaborgium (269)	Bohrium (270)	Hassium (269)	Me

⁵⁷ La	⁵⁸ Ce	⁵⁹ Pr	⁶⁰ Nd	⁶¹ Pm	⁶² Sm	EU	⁶⁴ Gd	65 Tb	⁶⁶ Dy	HO	68 Er	⁶⁹ Tm	Yb	⁷¹ LU
Lanthanum 138.90547	Cerium 140,116	Praseodymium 140,90766	Neodymium 144.242	Promethium (145)	Samarium 150,36	Europium 151,964	Gadolinium 157,25	Terbium 158.92535	Dysprosium 162.500	Holmium 164,93033	Erbium 167,259	Thulium 168,93422	Ytterbium 173.045	Lutetium 174.9668
89	90	91	92	93	94	95	96	97	98	99	100	101 _	102	103
AC	Th	Pa			Pu	Am		Bk	Cf	Es	Fm	Md	No	Lr
Actinium (227)	Thorium 232.0377	Protactinium 231.03588	Uranium 238.02891	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (266)

CORE STRENGTH: MATERIALS AND PRECURSOR CHEMISTRY

INFLECTIONS CREATING DEPOSITION OPPORTUNITIES

EXAMPLE INFLECTIONS IN THIS PRESENTATION

BZ DO

A REAL PROPERTY.

....

DRAM and VNAND Scaling

3D-DRAM

Selective ALD

FINFET TO GATE-ALL-AROUND INFLECTION

65nm

45 - 32nm

Last planar generation prior to HK/MG

First planar generation with HK/MG

Thermal / LPCVD Epi

ALD / PVD / Epi

Pictures 1-3 (from left): TechInsights 2005 - 2012. Picture 4: Reprint Courtesy of IBM Corporation[©]

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation, registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "IBM Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

≤ ~3nm

22 - 3nm

GATE-ALL-AROUND CREATES ALD/EPI OPPORTUNITIES

Note: for simplicity, not all individual layers are shown or listed. Each layer may consist of a few individual ones.

Bulk Si Epi **Buried Power Rail** SiGe/Si Channel (>3x!) Epi **Dielectric Liner and Wall Spacer Main and Inner STI Fill - Bottom Isolation** Source/Drain Epi (slower!) SAC Spacer / Dielectric Fill High-k, Dipole Layers Metal Gates N/P, Multi Vt Metal Gate Fill Dielectric Gate Cap Metal 0 Deep Contact

Epi/ALD in current FinFET

Additional passes for $GAA \rightarrow New SAM$

GATE-ALL-AROUND CREATES ALD/EPI OPPORTUNITIES

Logic/foundry ALD and Epi

Advanced Epi and ALD technologies enable gate-all-around architecture inflections

Epi from one single channel to three or more channels

New materials needed to maintain electrical performance: many multi-VT metals and dipole layers, better conductors, low-k spacers and gap-fills

Transition to gate-all-around will drive significant SAM expansion in Epi and ALD

NEAR TERM SCALING DRIVES NEW MATERIALS NEEDS

Source micrographs: TechInsights | DRAM schematic: ASMI

3D-NAND

- Common:
- Higher aspect ratios
 - Increased parasitics

Most effective way to scale is up

NEAR TERM SCALING NEEDS NEW MATERIALS FOR MEMORY

Source micrographs: TechInsights | DRAM schematic: ASMI

3D-DRAM DRIVES MORE ALD AND EPI OPPORTUNITIES

Monolithic 3D-DRAM is likely to happen around 2026

- Scale beyond 64Gb/chip limit for DIMM package
- Eliminate expensive EUV steps

- Channel: Si from Si/SiGe 64 (initially) Epi multi-layer stack
- Second generation 3D-DRAM: capacitor scaling with ALD Ultra High-k MIM cap

SELECTIVE ALD ENABLES ADVANCED TECHNOLOGIES

- Top-Down (litho-etch) supplemented with Bottom-Up (selective, self assembly) technologies Delivers expanded toolbox for smart process integration strategies
- Expected customer benefits
 - Reduced cost: potentially eliminating litho-etch steps
 - Improved die performance and yield: eliminating effects of edge placement errors

SELECTIVE ALD ENABLES ADVANCED TECHNOLOGIES

- ASMI leading in customer adoption of Selective ALD technologies
- Combinations of integrated ALD with ALE (Atomic Layer Etch) developed
- "There is plenty of room at the bottom": Selective ALD presents a potentially large SAM expansion

DRIVING INNOVATION FROM R&D TO MANUFACTURING

DRIVING INNOVATION FROM R&D TO MANUFACTURING

KEY TAKEAWAYS

Global R&D network enables early R&D collaboration with partners and customers globally

R&D organization driving innovation, accumulating over two decades of ALD experience

Current R&D portfolio is well aligned with customer roadmaps to further extend Moore's Law

Inflections creating new deposition opportunities

ASMI INVESTOR DAY2021 MARKET OUTLOOK **& OPPORTUNITIES**

Han Westendorp Corporate VP Global Marketing

September 28, 2021

FORWARD-LOOKING STATEMENTS

Cautionary Note Regarding Forward-Looking Statements:

This presentation contains "forward-looking statements". All statements in ASMI's Investor Day 2021 presentations, other than statements of historical fact, are forward-looking statements. Forward-looking statements involve risks and uncertainties that could cause actual results to differ materially from those in the forward-looking statements. These risks and uncertainties include, but are not limited to, economic conditions and trends in the semiconductor industry generally and the timing of the industry cycles specifically, product demand and semiconductor equipment industry capacity, worldwide demand and manufacturing capacity utilization for semiconductors, currency fluctuations, corporate transactions, financing and liquidity matters, the success of restructurings, the timing of significant orders, market acceptance of new products, competitive factors, litigation involving intellectual property, shareholders or other issues, commercial and economic slowdown or disruption including due to natural disasters (including pandamics), terrorist activity, armed conflict or political instability, changes in laws including import/ export regulations, changes in tax and exchange rates, epidemics and other risks indicated in the Company's reports and financial statements. Investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date of this presentation. The Company assumes no obligation nor intends to update or revise any forward-looking statements to reflect future developments or circumstances. Forward-looking statements are not guarantees of future performance, and actual results, developments and business decisions may differ materially from those envisaged by forward-looking statements.

KEY TAKEAWAYS

Strong digitalization trends driving significant growth in the semiconductor and WFE market

We grew faster than the deposition and WFE market over the 2016-2020 timeframe

The single-wafer ALD market is expected to grow from ~US\$1.5 billion in 2020 to approximately US\$3.1 - US\$3.7 billion in 2025, outgrowing the WFE market

The Epi market is expected to grow from ~US\$0.8 billion in 2020 to approximately ~US\$1.5 - US\$1.8 billion in 2025, outgrowing the WFE market

#1

#2

The transition from FinFET to gate-all-around (GAA) is expected to represent a market growth of ~US\$1.2 billion for single-wafer ALD and Epi combined by 2025

MARKET OUTLOOK

DIGITAL TRANSFORMATION DRIVES STRUCTURAL GROWTH

Global semiconductor revenue (US\$ billion)

Source: VLSI Research, ASMI Aug 2021

DIGITAL TRANSFORMATION DRIVES STRUCTURAL GROWTH

Source: VLSI Research, ASMI Aug 2021

WFE SPENDING EXPECTED TO INCREASE STRONGLY

WFE Market forecast (US\$ million)

Source: VLSI Research Sept 2021

WFE growth driven by secular trends of AI, 5G, EV, edge computing etc

Multi-year investments announced across all market segments

Further scaling, 3D transitions and GAA driving investments in advanced CMOS

Government sovereign efforts could add further investments

WITH INCREASING MIX OF MOST ADVANCED NODES

WFE market by technology node

Most advanced nodes (7nm and below) are structurally the fastest growing parts of the WFE market – ASMI strength

Source: Gartner July 2021

FY 2016-2020 PERFORMANCE

WE HAVE OUTPERFORMED THE WFE MARKET

ASMI Equipment revenue (US\$ million)

ASMI internal market data

ASMI US\$ equipment revenue grew with 24% CAGR over 2016-2020,

vs 15% CAGR for the Deposition and WFE markets

ASMI growing **1.5x faster** than the Deposition and WFE markets

WE HAVE OUTPERFORMED THE WFE MARKET

ALD single-wafer market (US\$ billion) 2 -

- Single-wafer ALD market CAGR of 18% ahead of WFE 15%
- ASMI increased its market share driven by continued strong position in logic/foundry and inroads in memory ALD

Historical market data: ASMI

- Epi market CAGR of 8% below WFE of 15%
- Largely explained by lower Epi market in 2020, impacted by a sharp drop in power/analog market
- ASMI more than doubled its market share in 2016-2020, driven by inroads in the advanced CMOS segment

Historical market data: VLSI Research

GROWTH OPPORTUNITIES

EXAMPLE APPLICATIONS EXPECTED TO DRIVE ASMI GROWTH

ALD HIGH-K GATE AND VT TUNING

GAA

FinFET

High-k, dipole layers for multi-VT

ALD PATTERNING SPACERS & EUV LAYERS **Continued pitch scaling** new EUV patterning materials

Source: Intel 1 | TechInsights 3,4,8 | imec 2,5 | ASMI internal 6,7,9,10

SINGLE-WAFER ALD MARKET OUTLOOK

Market outlook (US\$ billion)

Historical market data: ASMI

SINGLE-WAFER ALD MARKET OUTLOOK

Historical market data: ASMI | Future market data: ASMI

Logic/foundry (~US\$1.2 billion growth²)

- High-k gate & Vt tuning
- Metals
- Patterning spacers & EUV layers
- High aspect ratio gap-fill

Memory (~US\$0.7 billion growth²)

- High-k gate & Vt tuning
- Metals
- Patterning spacers & EUV layers
- High aspect ratio gap-fill
- Selective ALD

Range based on \$90-110 billion WFE Center is ~US\$3.4 billion at US\$100 billion WFE ² Compared to 2020

EPITAXY MARKET OUTLOOK

Market outlook (US\$ billion)

Historical market data: VLSI

EPITAXY MARKET OUTLOOK

Historical market data: ASMI | Future market data: ASMI

Logic/foundry

- Channel
- Source/drain contact

Memory

High Performance DRAM

Power, Analog, Wafer

¹ Range based on \$90-110 billion WFE Center is ~ \$1.7 billion at \$100 billion WFE

ALD AND EPI MARKET GROWTH IN ADVANCED LOGIC

Growth largely driven by node progression and move to gate-all-around

ASMI internal market data

ALD High-k gate & Vt tuning

ALD Metal

ALD patterning spacers & EUV layers

CMOS Epi

KEY TAKEAWAYS

Strong digitalization trends driving significant growth in the semiconductor and WFE market

We grew faster than the deposition and WFE market over the 2016-2020 timeframe

The single-wafer ALD market is expected to grow from ~US\$1.5 billion in 2020 to approximately US\$3.1 - US\$3.7 billion in 2025, outgrowing the WFE market

The Epi market is expected to grow from ~US\$0.8 billion in 2020 to approximately ~US\$1.5 - US\$1.8 billion in 2025, outgrowing the WFE market

#1

#2

The transition from FinFET to gate-all-around (GAA) is expected to represent a market growth of ~US\$1.2 billion for single-wafer ALD and Epi combined by 2025

ASM INVESTOR DAY2021 ASMI PRODUCTS & APPLICATION

Hichem M'Saad Executive Vice President, **Global Products**

September 28, 2021

FORWARD-LOOKING STATEMENTS

Cautionary Note Regarding Forward-Looking Statements:

This presentation contains "forward-looking statements". All statements in ASMI's Investor Day 2021 presentations, other than statements of historical fact, are forward-looking statements. Forward-looking statements involve risks and uncertainties that could cause actual results to differ materially from those in the forward-looking statements. These risks and uncertainties include, but are not limited to, economic conditions and trends in the semiconductor industry generally and the timing of the industry cycles specifically, product demand and semiconductor equipment industry capacity, worldwide demand and manufacturing capacity utilization for semiconductors, currency fluctuations, corporate transactions, financing and liquidity matters, the success of restructurings, the timing of significant orders, market acceptance of new products, competitive factors, litigation involving intellectual property, shareholders or other issues, commercial and economic slowdown or disruption including due to natural disasters (including pandamics), terrorist activity, armed conflict or political instability, changes in laws including import/ export regulations, changes in tax and exchange rates, epidemics and other risks indicated in the Company's reports and financial statements. Investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date of this presentation. The Company assumes no obligation nor intends to update or revise any forward-looking statements to reflect future developments or circumstances. Forward-looking statements are not guarantees of future performance, and actual results, developments and business decisions may differ materially from those envisaged by forward-looking statements.

KEY TAKEAWAYS

- Growing market share in Epi with new innovations and well engaged in forthcoming

- New innovations increasingly focused on sustainable solutions with energy usage reduction
- Transitioning from transactional to outcome-based business model in service to provide

LEADER IN ALD

GROWTH OF ALD IN THE SEMI INDUSTRY: ALD IS THE NEW CVD

BROADEST ALD PORTFOLIO

BROADEST ALD PORTFOLIO (CONTINUED)

DCM

Applications

Silicon Oxides / Metal **Oxides / Metal Nitrides**

- Patterning Spacer SiO
- HT SiO for liner
- Cut Mask gap-fill SiO
- EUV underlayer
- HQ SiO

XP8 Platform

QCM

HT Silicon Oxides / **Doped Oxides**

• HAR gap-fill SiO for Slit / Dummy and Staircase Fill • HQ SiO for TSV Liner • Seam free gap-fill • Low-k Liner

QCM

Silicon Nitrides

- Gap-fill SiN
- LT SiN Liner
- HQ SiN Liner
- Patterning Spacer SiN
- Seam free gap-fill SiN
- Topological Selective (TS) SiN
- Air Gap SiN

ALD – BEST IN CLASS REACTOR TECHNOLOGY

- Extremely fast and efficient precursor cycle times with minimized reactor volume
- Consistent delivery of solid chemistry with close-to-wafer pulsing valves
- Flexible architecture enables up to quinary (5 element) films

	Metric	Value
	Edge exclusion	1.8mmEE
	Mean Thick- ness (A)	48.0
	Range (A)	0.31
	Std.Dev. (A)	0.08
	NU% (1s)	0.16
7.500 47.611 47.722 47.833 47.944 48.0) 56 48.167 48.278	48.389 48.5

Chamber design for excellent within wafer uniformity and consistent reactor to reactor matching

ASMI ALD – PRECISION ALD PERFORMANCE

Gap-fill SiO / SiN

ASMI ALD gap-fill Technology

- High Film Quality (Low Wet Etch Rate)
- Void Free Fill > Seam free Fill
- Extreme Aspect Ratio Fill (50:1 100:1)

Liner SiO /SiN

• Extreme Aspect Ratio (50:1 - 100:1)

GROWING WITH EPI

EPI APPLICATIONS PRODUCTS STRUCTURE TREE

EXPANSION OF EPI SAM

EPI PORTFOLIO

Platform (Flexibility & high throughput density)

Reactor innovation (Intrepid ES & ESA)

ISOTHERMAL

Full range of ALE surface cleans (Previum)

V3

XPE 4+2

VERACE-CL

NEXT

AEGIS

VP

· ASMI

TECHNOLOGY INFLECTIONS ARE DRIVING EPI INNOVATION

Logic/foundry

Monolayer Epi

GAA DEVICE: EPI DEFINED

FinFET

Litho/Etch defined

CONVENTIONAL EPI: LARGE VARIATION AT EDGE

VERACE-CL: TIGHT CONTROL ON LTL UNIFORMITY

Wafer

EPI YIELD ENHANCEMENT FOR FOR HIGH POWER DEVICES

Single pass: excellent electrical performance, better yield (less defects), and lower cost

Conventional

Reactor architecture advantage allows one pass thick Epi deposition

Intrepid ESA

Single pass with no interfacial defects

Clean reactor after 100µm deposition

SELECTIVE EXPANSION IN VERTICAL FURNACE AND PECVD

VERTICAL FURNACE: ADDRESSING PRODUCTIVITY AND FLEXIBILITY

New Vertical Furnace platforms: A400 DUO and New 300mm platform

Significant wins in China

Multitude of applications: LPCVD, Cure, Oxidation

PECVD: INNOVATION FOR SELECTIVE DIFFERENTIATED APPLICATIONS

Developing innovation gap-fill capability with carbon-based films

COMMITMENT TO SUSTAINABILITY

INCREASED COMMITMENT TO SUSTAINABILITY

As a leading supplier of WFE equipment, ASMI has embarked on integrating sustainability in our product life cycle in the areas of innovation, design, system operation, and refurbishment

In innovation

- Engineering innovation such as Green Chiller, smart Power Distribution Unit (4.2% saving)
- Process innovation more efficient reactor cleans or precursor usage (>16% saving)

In design

- New insulation techniques / materials to reduce heat losses
- Optimized Power **Supply** / RF generators to reduce electrical usage

System operation

- Partnering with abatement companies to reduce effluents while optimizing fuel consumption
- **Developing smart** system idling (15% energy savings)

In refurbishment

- Active program to recycle and re-use of older generation equipment
- Extend the life of components / eliminate consumable parts through optimized parts cleaning

ENERGY REDUCTION THROUGH DESIGN INNOVATION

QCM advantage for cost and energy

FROM TRANSACTIONAL TO OUTCOME-BASED SERVICES

FROM A TRANSACTIONAL TO OUTCOME-BASED MODEL

Services portfolio

KEY TAKEAWAYS

- Growing market share in Epi with new innovations and well engaged in forthcoming

- New innovations increasingly focused on sustainable solutions with energy usage reduction
- Transitioning from transactional to outcome-based business model in service to provide

ASMI INVESTOR DAY2021 **FINANCIAL UPDATE: GROWTH THROUGH INNOVATION**

Paul Verhagen

September 28, 2021

FORWARD-LOOKING STATEMENTS

Cautionary Note Regarding Forward-Looking Statements:

This presentation contains "forward-looking statements". All statements in ASMI's Investor Day 2021 presentations, other than statements of historical fact, are forward-looking statements. Forward-looking statements involve risks and uncertainties that could cause actual results to differ materially from those in the forward-looking statements. These risks and uncertainties include, but are not limited to, economic conditions and trends in the semiconductor industry generally and the timing of the industry cycles specifically, product demand and semiconductor equipment industry capacity, worldwide demand and manufacturing capacity utilization for semiconductors, currency fluctuations, corporate transactions, financing and liquidity matters, the success of restructurings, the timing of significant orders, market acceptance of new products, competitive factors, litigation involving intellectual property, shareholders or other issues, commercial and economic slowdown or disruption including due to natural disasters (including pandamics), terrorist activity, armed conflict or political instability, changes in laws including import/ export regulations, changes in tax and exchange rates, epidemics and other risks indicated in the Company's reports and financial statements. Investors are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date of this presentation. The Company assumes no obligation nor intends to update or revise any forward-looking statements to reflect future developments or circumstances. Forward-looking statements are not guarantees of future performance, and actual results, developments and business decisions may differ materially from those envisaged by forward-looking statements.

KEY TAKEAWAYS

#1

#2

Revenue target of €2.8-€3.4 billion by 2025, representing a CAGR of 16-21%, outgrowing WFE market

free cash flow

excess cash returned to shareholders

ASMI has grown to be a leader in ALD, creating significant value for all stakeholders

- Operating margin target ranging from 26% to 31% in 2021-2025 generating strong
- Capital allocation policy unchanged. Investment in growth remains the key priority with

KEY HIGHLIGHTS AT A GLANCE FY16-FY20

Annualized total shareholder return

39%

Total cash returned to shareholders

€1.4 billion

Revenue 22% CAGR

Revenue per headcount **44%**

Gross margin

+3% points

¹ Excluding proceeds from patent litigation and arbitration settlement in FY19

² Excluding ASMPT dividends

³ Intensity per mtCO₂e/million € R&D investment

Accumulated free cash flow

€411 million^{1, 2}

ROIC

Operating margin

GHG emission scope 1&2

15%³

HISTORICAL KEY FINANCIAL PERFORMANCE FY16-FY20

STRONG TOTAL SHAREHOLDER RETURN

Total cumulative shareholder return in %

- 1,250 -
- 1,000 -
 - 750 -
 - 500 -

¹ Up to September 22, 2021

² Peers' average consists of Applied Materials, ASML, KLA, Lam Research, and Tokyo Electron

2020

2021¹

STRONG GROWTH IN DIVIDENDS

Dividend per share (in € paid over)

- 2.50 -

Dividends gradually increased from €0.40 per ordinary share in FY10 to €2.00 in FY20

STRONG PROFITABLE GROWTH

Revenue growth key drivers:

- Growth in end markets and WFE market
- Increased market share in ALD and epitaxy
- Growth in spares and services

Excluding proceeds from patent litigation and arbitration settlement in FY19 ² FY17: Excludes €285 million gain on sale of ASMPT stake

Net earnings (€ million)

Net earnings:

• Net earnings development is not fully consistent with revenue growth mainly due to annual fluctuations in currency results, tax and income from ASMPT

MARGIN EXPANSION AND EARNINGS GROWTH

Gross margin (in %)

Gross margin expansion key drivers:

- Application mix
- Operating leverage and productivity improvements
- Supply chain improvements
- Reduced margins in FY17/18 due to investments in new product introductions

¹ Excluding proceeds from patent litigation and arbitration settlement in FY19

Operating margin (in %)

Improved operating margin key drivers:

- Development gross margin
- Operating leverage and productivity improvements in SG&A and R&D

EXCESS CASH RETURNED TO SHAREHOLDERS

Free cash flow (FCF)

Free cash flow (FCF)

- Strong improvement FCF in FY19/FY20 driven by improved profitability
- Reduction in FY20 FCF is due to some delayed customer payments just after year end

Cumulative cash returned to market (€ million)

Cash returned to shareholders

- Almost €2 billion cash returned since FY10 of which:
 - Approximately €1 billion in share buyback, €0.5 billion in dividends and €0.5 billion in return of capital

INCREASED R&D INVESTMENTS TO SUPPORT VALUE CREATING GROWTH

R&D expenses (€ million)

and 10% net R&D as a % of revenue

¹ Excluding proceeds from patent litigation and arbitration settlement in FY19 ² Gross R&D expenses excludes capitalization, amortization and impairment

INCREASED CAPITAL EXPENDITURES TO SUPPORT MANUFACTURING EXPANSION

Capital expenditures, gross (€ million)

Completed our new facility in South Korea to strengthen our position in this key market

our manufacturing capacity

DISCIPLINED MANAGEMENT OF WORKING CAPITAL

Working capital amount (€ million) and days

¹ Excluding proceeds from patent litigation and arbitration settlement in FY19

Working capital days in the range of 42 to 82 days

- Changes in working capital days mainly caused by DSO ranging from 50 to 75 days
- DIO improved from 59 to 42 days
- Payables remained stable around 30 to 35 days
- Other working capital remained stable around 17 to 24 days

TARGETS FY21-FY25

FINANCIAL TARGETS TOWARDS FY25

	FY16	FY20	FY25
Revenue	€598 million	€1.3 billion	€2.8 to €3.4 billic
Revenue growth	13% CAGR (FY12-FY16)	22% CAGR (FY16-FY20)	16-21% CAGR (FY20-FY25)
Gross margin %	44%	47%	46 - 50% (FY21-FY25)
SG&A % revenue	15%	12%	High single digit (FY25)
R&D (net) % revenue	15%	10%	High single digit to low teens (FY25
Operating margin %	14%	25%	26 - 31% (FY21-FY25)
SG&A % revenue R&D (net) % revenue Operating margin %	15% 15% 14%	12% 10% 25%	High single digit (FY25) High single digit to low teens (FY25) 26-31% (FY21-FY25)

¹ In constant currencies

NON-FINANCIAL TARGETS

Category	Targets	
GHG emissions	Net zero by 2035	
Renewable electricity	100% renewable	
Safety	Recordable ove per 100 employ	
1 1 1 1 mar		

5, including scope 1, 2 and 3 emissions

e electricity by 2024

erall injury rate less than 0.1 cases ees by 2025

REVENUE TARGET OF €2.8 - €3.4 BILLION, OUTGROWING WFE MARKET

WFE market forecast (US\$ billion)

ASMI expects to outgrow the WFE market over the next five years

¹ Excluding proceeds from patent litigation and arbitration settlement in FY19

- ALD leadership > Maintain market leadership in logic/foundry and grow memory
- Epi > Gain market share
- Spares and services > Grow outcome-based services
- PECVD and Vertical Furnaces > Selected growth

SUSTAINABLY HIGHER GROSS MARGIN

¹ Excluding proceeds from patent litigation and arbitration settlement in FY19

Sustainably higher gross margin:

SG&A GRADUALLY DECREASE AS % OF REVENUE

¹ Excluding proceeds from patent litigation and arbitration settlement in FY19

SG&A as % of revenue will decrease benefiting from operating leverage due to revenue growth and targeted productivity improvements

HIGH SINGLE DIGIT TO LOW TEENS DEPENDING ON REVENUE GROWTH

R&D (net) investments (€ million)

R&D Investments

- Advanced R&D for coming inflections in logic/foundry and memory segments
- Lab expansions & equipment upgrades

¹ Excluding proceeds from patent litigation and arbitration settlement in FY19

R&D (gross) investments (€ million)

 Maintain leadership in ALD and grow Epi through continuous improvement and development of new applications

IMPROVED OPERATING MARGIN TARGET RANGE

¹ Excluding proceeds from patent litigation and arbitration settlement in FY19

Key drivers for improved operating margin:

- Higher gross margin
- Productivity improvement in SG&A and to a lesser extent in R&D

TAX RATE TO GRADUALLY INCREASE OVER TIME

Effective Tax Rate (ETR) (in %)

ETR gradually increasing to low twenties:

- Full utilization of historic NOLs (Net Operating Losses)
- Expiring tax incentives in coming years
- FY21 ETR expected to be high teens

DISCIPLINED MANAGEMENT OF WORKING CAPITAL AND CAPEX

• We expect working capital days to range from 55-75 days

¹ Excluding proceeds from patent litigation and arbitration settlement in FY19

- Higher capital expenditures in FY18 and FY20 for capacity expansion
- Future capital expenditure spend ranging from €60-€100 million annually

CAPITAL ALLOCATION STRATEGY

Priority 1 Invest to support future growth

- > R&D
- > Capex
- > M&A

Priority 2 Maintain a strong balance sheet

Increase targeted minimum cash position towards €600 million in coming years

Priority 3 Sustainable dividend payments

Priority 4 Return of excess cash to shareholders through share buybacks

ASMI INVESTOR DAY 2021

BUY

1512.88

KEY TAKEAWAYS

#1

#2

Revenue target of €2.8-€3.4 billion by 2025, representing a CAGR of 16-21%, outgrowing WFE market

free cash flow

excess cash returned to shareholders

ASMI has grown to be a leader in ALD, creating significant value for all stakeholders

- Operating margin target ranging from 26% to 31% in 2021-2025 generating strong
- Capital allocation policy unchanged. Investment in growth remains the key priority with

ASMI INVESTOR DAY2021

#

#2

#3

#4

#5

GROWTH THROUGH INNOVATION: KEY TAKEAWAYS

Strong digitalization trends driving significant growth in the semiconductor and WFE market

ASMI is the leader in ALD and expanding in Epi, technologies that are expected to outgrow the WFE market driven by key inflections such as gate-all-around (GAA)

Strengths in innovation, early customer engagements and product differentiation enables advanced cost effective solutions for customers

Strategic objectives are maintaining leadership in logic/foundry, expansion in memory, share gains in the Epi market, growing spares and services and increasing focus on sustainability

We target to grow revenue to €2.8-€3.4 billion by 2025 representing a CAGR of 16-21% with an operating margin of 26-31%

